

Chemistry Standard level Paper 2

Thursday 11 May 2017 (afternoon)

Candidate session number								
					1			

1 hour 15 minutes

Instructions to candidates

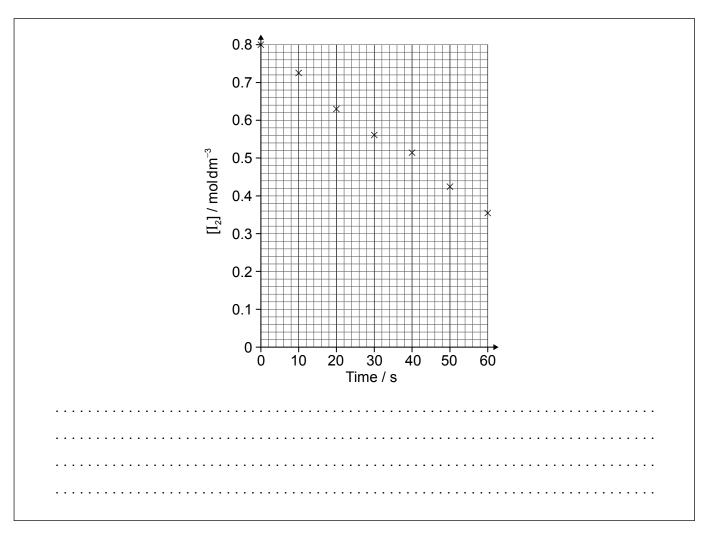
- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · Answer all questions.
- · Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data dooklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

2217-6111 © International Baccalaureate Organization 2017 Answer all questions. Write your answers in the boxes provided.

1. The rate of the acid-catalysed iodination of propanone can be followed by measuring how the concentration of iodine changes with time.

$$I_{2}(\mathsf{aq}) + \mathsf{CH_{3}COCH_{3}(\mathsf{aq})} \rightarrow \mathsf{CH_{3}COCH_{2}I(\mathsf{aq})} + \mathsf{H^{^{+}(aq)}} + \mathsf{I^{^{-}(aq)}}$$

(a) (i) daggest new the change of loanie concentration could be followed.	(a)	(i)	Suggest how the change of iodine concentration could be followed.	[1
---	-----	-----	---	----



(Question 1 continued)

(ii) A student produced these results with $[H^+] = 0.15 \, \text{mol dm}^{-3}$. Propanone and acid were in excess and iodine was the limiting reagent.

Determine the relative rate of reaction when $[H^+] = 0.15 \,\text{mol dm}^{-3}$. [2]

(Question 1 continued)

(b) The student then carried out the experiment at other acid concentrations with all other conditions remaining unchanged.

[H ⁺] / mol dm ⁻³	Relative rate of reaction
0.05	0.0025
0.10	0.0051
0.20	0.0100

	of acid.	[2]
2.	Titanium is a transition metal.	
	(a) Describe the bonding in metals.	[2]

(Question 2 continued)

(b) Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:

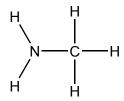
Mass number	% abundance
46	7.98
47	7.32
48	73.99
49	5.46
50	5.25

Calculate the relative atomic mass of titanium to two decimal places.	[2]
(c) State the number of protons, neutrons and electrons in the ⁴⁸ ₂₂ Ti atom.	[1]
Protons:	
Neutrons:	
Electrons:	

(This question continues on the following page)

Turn over

Ques	tion	2 cor	ntinued)	
((d)	(i)	State the full electron configuration of the ⁴⁸ ₂₂ Ti ²⁺ ion.	[1
		(ii)	Explain why an aluminium-titanium alloy is harder than pure aluminium.	[2
((e)	(i)	State the type of bonding in potassium chloride which melts at 1043 K.	[1
		(ii)	A chloride of titanium, ${\rm TiCl_4}$, melts at 248 K. Suggest why the melting point is so much lower than that of KCl.	[1
((f)	TiCl ₄	reacts with water and the resulting titanium(IV) oxide can be used as a smoke en.	
		(i)	Formulate an equation for this reaction.	[2



	(ii) Suggest one disadvantage of using this smoke in an enclosed space.	[1]
3.	Vanadium, another transition metal, has a number of different oxidation states. (a) Determine the oxidation state of vanadium in each of the following species.	[2]
	V_2O_5 :	
	v ₂ O ₅ .	
	VO ²⁺ :	
	(b) Formulate an equation for the reaction between $VO^{2+}(aq)$ and $V^{2+}(aq)$ in acidic solution to form $V^{3+}(aq)$.	[1]

Turn over

4. Two hydrides of nitrogen are ammonia and hydrazine, N₂H₄. One derivative of ammonia is methanamine whose molecular structure is shown below.

(a) Estimate the H–N–H bond angle in methanamine using VSEPR theory.	[1]

(b) Ammonia reacts reversibly with water.

$$NH_3(g) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

Explain the effect of adding H⁺(aq) ions on the position of the equilibrium. [2]

(c)	Hydrazine reacts with water in a similar way to ammonia. Deduce an equation for the reaction of hydrazine with water.	[1]

		 				•			•	•					•				 		 	•		 	 	 		•	•						•						

Outline, using an ionic equation, what is observed when magnesium powder is added

(Question 4 continued)

	to a solution of ammonium chloride.	[2]
(e)	Hydrazine has been used as a rocket fuel. The propulsion reaction occurs in several stages but the overall reaction is:	

$$N_2H_4(1) \to N_2(g) + 2H_2(g)$$

Suggest why this fuel is suitable for use at high altitudes. [1]

.....

(Question 4 continued)

(f) Determine the enthalpy change of reaction, ΔH , in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.

[3]

$$N_2H_4(g) \to N_2(g) + 2H_2(g)$$

(g) The standard enthalpy of formation of $N_2H_4(l)$ is +50.6 kJ mol⁻¹. Calculate the enthalpy of vaporization, $\Delta H_{\rm vap}$, of hydrazine in kJ mol⁻¹.

$$N_2H_4(l) \rightarrow N_2H_4(g)$$

(If you did not get an answer to (f), use $-85\,\mathrm{kJ}$ but this is not the correct answer.) [2]

(Question 4 continued)

(h) Hydrazine is used to remove oxygen from water used to generate steam or hot water.

$$N_2H_4(aq) + O_2(aq) \rightarrow N_2(g) + 2H_2O(l)$$

The concentration of dissolved oxygen in a sample of water is $8.0 \times 10^{-3} \, g \, dm^{-3}$.

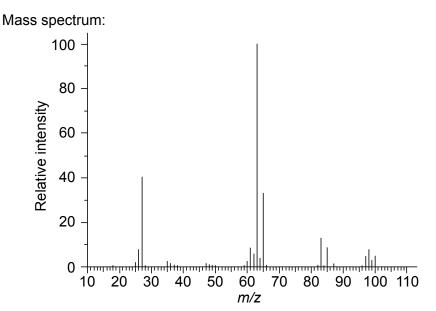
(i) Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from 1000 dm³ of the sample.

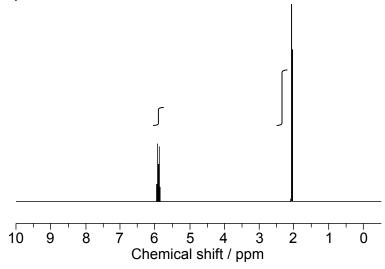
[3]

• •	•	•	•	•	•	•	 •	•	 	•	•	•	•	 •	•	•	-	 •	•	•	•	 •	•	•	•	 •	•	•	 •	•	 •	•	•	 •	 •	•	•	 •	•	•	•	•	•	•	•	٠
٠.									 								•																		 											
٠.									 																										 											
									 	•			•														•				 				 			 								

(ii) Calculate the volume, in dm³, of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = 24.8 dm³ at SATP.)

[1]


5.	This question is about carbon and chlorine compounds.	
	(a) Ethane, C ₂ H ₆ , reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.	[1]
	Type of reaction:	
	Mechanism:	
	(b) Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.	[3]
	Two propagation steps:	
	One termination step:	
	(c) (i) One possible product, X , of the reaction of ethane with chlorine has the following composition by mass:	
	carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%	
	Determine the empirical formula of the product.	[2]


(Question 5 continued)

(ii) The mass and ¹H NMR spectra of product **X** are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.

[3]

¹H NMR spectrum:

[Source: http://sdbs.db.aist.go.jp]

 	ı
 	ı
 	•
 	<u>-</u>

(This question continues on the following page)

Turn over

(Question 5 continued)
•

	(d)	Chloroethene, $\rm C_2H_3Cl$, can undergo polymerization. Draw a section of the polymer with three repeating units.	[1]
6.	Ben	zene is an aromatic hydrocarbon.	
	(a)	Discuss the physical evidence for the structure of benzene.	[2]
	(b)	State the typical reactions that benzene and cyclohexene undergo with bromine.	[1]
	Ben	zene:	
	Сус	ohexene:	

Please **do not** write on this page.

Answers written on this page will not be marked.

Please **do not** write on this page.

Answers written on this page will not be marked.

